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3. Make a diffraction pattern map to assist index~g. 
For the case of the close-packed structure, use the [1120] 
zone-axis microdiffracfion pattern to deduce both the 
stacking period and the stacking sequence. The micro- 
diffraction pattern must be taken in a very thin region to 
relate the intensity of the diffraction spots to the structure 
factor. 

4. Use the deduced structure model to simulate the 
CBED pattern and compare it with the TEM pattern. 
Adjust the lattice parameter until satisfactory agreement 
is achieved. A well defined CBED pattern is a unique 
fingerprint of the structure and provides conclusive 
identification of the structure. 
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Abstract 

Neutron diffraction data have been collected for 
hexamethylenetetramine (HMT) at 15, 50, 80, 120, 160 
and 200K using a single crystal (mass 8.1 mg). The 
structure refinement at each temperature included two 
extinction parameters and third-order thermal parameters 
for the H nuclei. Extinction effects are very severe with 
extinction factors as small as 0.2F 2 for three reflections 
(800, 110 and 440). Application of the Sabine extinction 
theory indicates that the crystal domain size decreases 
from 115 ~tm at 200 K to 85 Ixm at 15 K. The half-width 
in the mosaic spread (7" of arc) is almost independent of 
temperature. An extinction model without phase correla- 
tions between mosaic blocks gives a slightly better fit to 
the diffraction data. The nuclear mean square thermal 
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displacements have been analysed assuming no coupling 
between the external (rigid body) and internal vibrations. 
This gives mean square displacements for rigid-body 
vibration in which zero-point vibrational effects are 
apparent. The methylene H nuclei have internal vibra- 
tions approximately independent of temperature. At 
200 K, the H nuclear vibrations have a small anharmonic 
component, but at temperatures below 160K this 
becomes insignificant in terms of the experimental error. 

Introduction 

The crystal structure of hexamethylenetetramine (HMT, 
C6H12N4, Fig. 1) was first determined by Dickinson & 
Raymond (1923). Much of the interest in this molecular 
crystal structure comes from its simplicity and high 
symmetry. The 43m molecular point syrnrn_etry is fully 
utilized in the crystal that has space group 143m with two 
molecules per cell. Thus, the asymmetric unit consists of 
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only three atoms (C, N and H; Fig. 1). There have been 
many studies on HMT including the accurate determina- 
tion of atomic positional and mean square (m.s.) 
displacement parameters by X-ray diffraction (Becka & 
Cruickshank, 1963a; Stevens & Hope, 1975). Phonon 
dispersion curves have been measured from coherent 
inelastic neutron scattering (Dolling & Powell, 1970) and 
the lattice vibrations have also been studied using X-ray 
thermal diffuse scattering (Powell & Sfindor, 1971). 
Spectroscopic studies of HMT have involved Raman 
(Couture-Mathieu, Mathieu, Cremer & Poulet, 1951), IR 
(Cheutin & Mathieu, 1956; Mecke & Spiesecke, 1955) 
and incoherent inelastic neutron scattering methods 
(Thomas & Ghosh, 1975; Jobic, Ghosh & Renouprez, 
1981). An earlier study of HMT by neutron diffraction 
(Duckworth, Willis & Pawley, 1970) was based on data 
collected at room temperature. Terpstra, Craven & 
Stewart (1993) carded out new ref'mements based on 
these data to study the anharmonic thermal vibrations 
and also used the room-temperature X-ray data of 
Stevens & Hope (1975) to map the charge density 
distribution. The electrostatic potential for HMT isolated 
from its crystal structure and also the molecular octapole 
moment have been determined from X-ray data collected 
at 120K (Kampermann, Ruble & Craven, 1994). 

We now report further neutron diffraction studies on 
HMT at six temperatures ranging from 15 to 200 K. Our 
aims were first to analyse the neutron extinction effects, 
which are severe in HMT. This has been done using the 
theory of Sabine (1992, 1994). Second, we have analysed 
the molecular thermal vibrations including the anhar- 
monic vibrations of the H nuclei. 

Experimental 
The neutron diffraction data were collected using a four- 
circle automatic diffractometer at the Brookhaven High 

Fig. 1. Hexamethylmetetramine (HMT) showing 50% probability 
thermal ellipsoids (Johnson, 1976) for 15 K. The labelled nuclei are 
those that form the asymmetric unit. 

Flux Beam Reactor. A monochromatic neutron beam was 
obtained using the 002 reflection from a beryllium 
crystal. The wavelength (1.0463 ~,) was determined by a 
least-squares fit of sin20 values for reflections from a 
standard KBr crystal (assuming a 0 = 6.6000 A at 298 K). 
Crystals of HMT were grown from an ethanol solution 
by slow evaporation at room temperature. The crystal 
selected for neutron diffraction had dimensions 
2.17 x 2.17 x 1.81 mm, volume 5.96mm 3 and exhibited 
the form {110}. The HMT crystal was mounted on a 
(110) face by gluing to an aluminium pin and then sealed 
under He gas inside an aluminium canister. During 
diffractometry, the specimen temperature was maintained 
with a two-stage helium cryostat within 0.1 ° of preset 
values. Cooling/warming rates between measurements 
were -,~2 ° min -1. The diffraction data (Table 1) were 
obtained in the order of increasing temperature. At each 
temperature, the lattice constant a 0 for HMT was 
determined by a least-squares fit of sin20 values for 32 
reflections in the range 50 < 20 < 55 °. Intensities of 
reflections hkl with h, k, l from 0 to 10; s in0/2 < 
0.78 ,~-1 were measured within the six equivalent sectors 
bounded by reciprocal-lattice vectors (100), (001), (0il) 
and (100), (010), (011), using the 09/20 step-scan 
method. The scan ranges were fixed at A20 = 3.0 ° 
for 20 < 55 ° and were varied as A20 = (1.709 + 
2.740 tan 0) ° for 55 < 20 < 110 °. Intervals between 
steps were adjusted to give between 60 and 90 points 
in the scans. Counts were accumulated at each step for a 
preset monitor count of the incident beam, which 
required --, 2 s. The intensities of two reflections (044 
and 611) were remeasured at ~ 3 h intervals and were 
found to be constant within 2%. The integrated intensity 
for each reflection was obtained by subtracting the 
background as estimated from the two outer 10% parts of 
the scan. The variance o'2(/) was derived from counting 
statistics. The intensity data were corrected for absorp- 
tion by an analytical procedure (de Meulenaer & Tompa, 
1965; Templeton & Templeton, 1973), using measured 
crystal dimensions and /z = 2.918cm -1 as evaluated 
from the mass absorption coefficient t z / p=  
24.83cm 2 g-1 for hydrogen at 2 -  1.0463,4, (Koetzle 
& McMullan, 1980). Transmission factors ranged 
between 0.582 and 0.657. Symmetry-related F 2 values 
were found to be in good agreement (Table 1) and were 
averaged in each data set to give the independent 
observations used in the structure refinement. 

Methodology 

(i) Extinction effects 

Extinction effects are particularly severe in HMT. 
This, together with the availability of neutron diffraction 
data over a wide temperature range, makes HMT well 
suited for an experimental test of extinction theory. We 
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Temperature (K) 
a 0 (A) 
No. of reflections 

Total 
Independent 

R(F2)intt 

15 
6.9274 (8) 

501" 
90 
0.028 

Table 1. Crystallographic data 

50 80 120 
6.9337 (7) 6.9424 (7) 6.9551 (7) 

466 466 472 
90 90 91 
0.028 0.028 0.028 

* Includes ~p-scan data for reflection 033. 
t R(FZ)int = ~_,i( F 2  --  (F2))/Y'~AF2). 

160 200 
6.9693 (7) 6.9835 (7) 

472 505* 
91 91 
0.030 0.032 

describe below the results of structure refinements 
involving three different models for the extinction effects 
(Sabine, 1992, 1994; Becker & Coppens, 1974). 

In the theory proposed by Sabine (1992), primary 
extinction, secondary extinction and absorption are 
treated with a unified approach. In the limit as the 
misorientation between mosaic blocks approaches zero 
and secondary extinction becomes negligible, the crystal 
becomes monolithic and perfect so that primary extinc- 
tion needs to be considered for the crystal as a whole. In 
order to satisfy this limiting case, there must be a spatial 
correlation between the different mosaic blocks. Thus, 
there must also be a coherent phase relationship between 
the scattering from different blocks. This is in contrast to 
the theory originally given by Darwin (1922) and 
followed by Hamilton (1957), Werner (1974) and Becker 
& Coppens (1974), in which it is assumed that there is no 
such correlation. Under these circumstances, in the limit 
of zero mosaic spread, the crystal can be likened to a 
brick wall having parallel bricks (the mosaic blocks) but 
with varying thicknesses of mortar between the bricks. 

Recently, Sabine (1994) has further developed his 
theory so that it can also deal with the case of a crystal 
consisting of uncorrelated blocks. The approach taken is 
similar to that of Hamilton (1957). The scattering cross 
section, used as input for the system of equations 
governing secondary extinction, is first modified by 
primary extinction within each block. Thus, the extinc- 
tion factor is 

E(20) -- Ep(20)Es(20, Ep). 

In the notation of Sabine (1992), Ep is expressed as a 
power series in 

Xp = (/Nc2F) 2, 

where l is the block size and N c is the number of unit 
cells in unit volume. Similarly, E s is expressed as a 
power series in 

xs = EpQogD, 

where g is the mosaic spread parameter for an isotropic 
triangular distribution of block orientations and D is the 
mean path length for the diffracted beam in the crystal 
(Sabin e, 1994). It would be desirable to include a block 
shift parameter to describe the partial spatial correlation 

of the mosaic blocks (Wilkins, 1981), but this has not yet 
been done. Thus, in the least-squares structure ref'me- 
ments for HMT, there are only two variables, g and l, for 
modelling the extinction, regardless of whether the 
blocks are assumed to be spatially correlated or not. 

(ii) The structure refinement 

Full-matrix least-squares refinement was carded out 
using program NOOT (Craven &Weber, 1987), modified 
to provide three options for modelling extinction effects 
(Sabine, 1992, 1994; Becker & Coppens, 1974). The 
residual ~-]w(F2o-F2) 2 was minimized with w = 
cr-2(Fo 2) and tr2(F 2) = O'2ounts -1- (0.02F2) 2. Coherent 
scattering lengths were assumed to be 6.648, 9.360, 
-3.741 fm for carbon, nitrogen and hydrogen, respec- 
tively (Koester, 1977). Because of the high crystal 
symmetry, only 22 variables were refined including the 
overall scale factor, two extinction parameters (l and g) 
and third-order anharmonic nuclear vibration parameters 
for H assuming the Gram--Charlier formalism (Johnson 
& Levy, 1974). Anharmonic parameters for C and N 
were included initially but were found to be insignifi- 
cantly different from zero and were therefore omitted. At 
first, all reflections were included in the ref'mement. 
However, because of severe extinction effects, 13 
reflections with smallest extinction factors (E < 0.5) 
were given zero weight in the final refinements. Final 
values for the nuclear parameters are shown in Table 2 
and extinction parameters obtained assuming different 
extinction models are shown in Table 3.* In refinements 
with different extinction models, there were no sig- 
nificant differences in the nuclear parameters. The final 
C - - N  bond distances range from 1.473 (2)A at 15 K to 
1.465 (2),~ at 200 K (see Table 4 for values corrected 
for libration). The C m H  bond distances range from 
1.097(3) to 1.094(4)A. Bond angles range from 
112.6(5) to 112.4(1) ° for N - - C - - N ,  from 108.0(1) to 
107.9 (3) ° for C - - N - - C ,  from 108.4 (2) to 108.4 (2) ° for 
N m C - - H  and from 110.7(2) to 110.7(3) ° for 
H - - C m H .  

* Lists of  structure factors have been deposited with the IUCr 
(Reference: BK0011). Copies may be obtained through The Managing 
Editor, International Union of  Crystallography, 5 Abbey Square, 
Chester CH1 2HU, England. 
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Table 2. Nuclear parameters 

Parameters are for nuclei in the asymmetric unit as defined by Terpstra et al. (1993), which is different from the asymmeWic unit of  Duckworth et al. 
(1970). Here, C is at (x,0,0), N is at (x,x,x) and H at (x,y,y). Parameter values are from the refinements assuming mosaic blocks which are 
uneorrelated (Sabine, 1994) and in which 13 reflections with E < 0.5 were omitted. The thermal displacement factor is given by 

u j jk~ j 

where U ij is in units of  .~2 x 104 and C ju is in ~3 x 105. 

15 K 50 K 80 K 120 K 160 K 200 K 
Carbon 

0.2431 (1) 0.2427 (1) 0.2421 (1) 0.2414 (1) 0.2405 (1) 0.2399 (2) 
UH 27 (3) 36 (3) 60 (2) 91 (3) 122 (3) 155 (4) 
U 33 60 (2) 97 (2) 147 (2) 220 (2) 306 (3) 388 (4) 
U 23 2 (3) 0 (3) 1 (3) 2 (3) 4 (5) 2 (6) 

Nitrogen 
0.1251 (2) 0.1248 (2) 0.1246 (2) 0.1241 (2) 0.1237 (2) 0.1233 (2) 

UH 43 (2) 69 (2) 107 (2) 158 (2) 221 (2) 280 (3) 
U ~2 -11 (2) -18  (2) -25 (1) -37  (1) -52  (2) -67  (2) 

Hydrogen 
x 0.3331 (5) 0.3334 (5) 0.3322 (4) 0.3315 (4) 0.3302 (5) 0.3290 (5) 
y -0.0922 (3) -0.0923 (3) -0.0921 (3) -0.0913 (4) -0.0914 (4) -0.0911 (5) 
U n 151 (6) 172 (6) 198 (6) 246 (6) 304 (8) 353 (9) 
U 22 214 (5) 268 (5) 352 (5) 461 (6) 611 (8) 731 (10) 
U ~2 57 (4) 64 (4) 81 (4) 96 (5) 130 (7) 143 (8) 
U 23 20 (5) 27 (5) 32 (5) 38 (6) 42 (9) 39 (11) 
C m -1  (4) 2 (4) - 3  (4) 0 (4) - 6  (5) - 8  (7) 
C z22 - 4  (3) - 4  (3) -1  (3) 10 (4) 15 (6) 23 (8) 
C n2 -1  (2) -1  (2) - 2  (2) - 2  (2) - 6  (3) - 9  (3) 
C ~22 - 3  (2) 0 (2) -1  (2) - 2  (2) - 3  (3) - 4  (4) 
C 233 2 (2) 1 (2) 2 (2) 0 (2) 2 (3) 5 (4) 
C a23 1 (2) 3 (2) 4 (2) 2 (3) 5 (4) 10 (5) 

Table 3. Extinction parameters 

Values of  g (mean mosaic-block orientation, units rad -I x 10 -~) and I (mean mosaic-block size, units lain) are given for the structure refinements 
with three models for neutron extinction. Also given are Rw(F 2) {)-.] w A 2 / y ~  wF4o } 1/2, where A -- 2 2 = -- F~ - F c and the least-squares correlation 
coefficient p(g , l) = or(g, l) / { cr(g )o( l) } 1/2. 

Blocks scattering with correlation in 
phases (Sabine, 1992) 

Blocks scattering without correlation in 
phases (Sabine, 1994) 

Extinction model of  Becker & Coppens 
(1974) 

Temp. g 1 Rw(F 2) p(g, l) g l Rw(F 2) p(g, l) g l Rw(F 2) p(g, l) 
15 K 2.2 (3) 93 (8) 0.039 -0.90 2.5 (5) 83 (5) 0.033 < 0.5 6 (4) 31 (20) 0.040 -0.99 
50 K 2.3 (3) 95 (7) 0.034 -0.89 2.5 (5) 92 (5) 0.034 < 0.5 6 (3) 32 (15) 0.033 -0.99 
80 K 2.5 (3) 93 (7) 0.032 -0.86 2.7 (4) 81 (5) 0.027 < 0.5 4 (4) 40 (22) 0.031 -0.99 

120 K 2.4 (3) 103 (7) 0.032 -0.84 2.7 (5) 89 (5) 0.028 < 0.5 4 (3) 37 (15) 0.035 -0.98 
160 K 2.5 (3) 104 (8) 0.037 -0.83 2.8 (5) 90 (7) 0.033 < 0.5 4 (4) 42 (27) 6.033 -0.99 
200 K 2.3 (3) 116 (9) 0.038 -0.84 2.8 (5) 100 (7) 0.034 < 0.5 4 (5) 46 (36) 0.038 -0.99 

Results and discussion 

(i) Extinction effects in HMT 

The structure refinements all indicate that the HMT 
crystal is almost perfect. According to the Sabine theories 
(Sabine, 1992, 1994), the cubic mosaic block size (/) is in 
the range from 85 to 100 l~m (Table 3; Fig. 2), which is 
appreciable when compared with the mean path length of 
neutrons inside the crystal (--, 1600 l~m). There appears 
to be a small increase in block size as the temperature 
increases. The mosaic-spread parameter (g) is similar at 
the different temperatures (Table 3; Fig. 3), correspond- 
ing to a half-width in the angular distribution of 7". The 
refinements using the Becker & Coppens (1974) theory 
are less satisfactory (Table 3) owing to the almost 

Table 4. Rigid-body vibrations for HMT (H nuclei 
omitted) 

Least-squares fitting was made with U ij for C and N corrected for the 
internal vibrations of  HMT (Elvebredd & Cyvin, 1972). Here, 
Rw(Uij) = {Y~ w A 2 / E w(UioJb~). 2 } 1/2' where the summation is over the 
nine independent variables U'~ for both C and N, A = IU~b ~ - U0~cl 
and w = *r2(U/J). The rigid-body isotropic m.s. displacements are t 
(translation) and to (libration). The C - - N  distances are before [column 
(a)] and after [column (b)] corrections for  rigid-body libration. The 
e.s.d, in the uncorrected distances is 0.002 A. 

C - - N  distance (/k) 
Temperature (K) Rw(U ij) t (,~2) to (deg 2) (a) (b) 

15 0.040 0.0012 (1) 3.8 (1) 1.473 1.475 
50 0.037 0.0023 (1) 6.9 (1) 1.472 1.475 
80 0.023 0.0047 (1) 10.0 (1) 1.470 1.475 

120 0.012 0.0076 (1) 15.1 (1) 1.468 1.475 
160 0.014 0.0109 (1) 21.6 (2) 1.466 1.476 
200 0.015 0.0141 (1) 27.6 (3) 1.465 1.477 
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complete least-squares correlation (> 0.98) between the 
extinction variables 1 and g. Thus, a meaningful 
determination of both variables is not obtained. A 
comparison of the three sets of refinements (Table 3) 
indicates that the Sabine (1994) theory (spatially 
uncorrelated mosaic blocks) gives the best agreement 
with the observed Bragg intensities by a small margin. It 
can be seen that this theory also suffers least from the 
least-squares correlation between I and g. 

Unusually small extinction factors E = lob Jlki ~ were 
obtained with each of the extinction models that was 
tested. In Fig. 4, E is plotted vs temperature for selected 
reflections, including the three most severely affected, 
namely 110, 440 and 800, which occur at sin 0/2 = 0.10, 
0.41 and 0.57,~ -1, respectively. We emphasise that 
severe extinction is not restricted to reflections with small 
sin 0/2. In general, E increases as temperature increases, 
the temperature dependence being greater for reflections 
with large sin0/2. It is perhaps surprising that an 
increase in temperature causes a decrease in extinction 
effects, while at the same time the HMT crystal is 

becoming more nearly perfect, as indicated by the 
observed increase in mosaic block size, l. However, 
from consideration of the expression Xp = (/Nc2F) z 
which governs primary extinction, it can be seen that 
the effect of an increase in I can be offset by a decrease in 
F 2 arising from the increase in nuclear m.s. displace- 
ments at higher temperature. For example, with the 
temperature increase from 15 to 200 K, E for reflection 
800 increases from 0.216 to 0.439 so that the Bragg 
intensity is doubled. With the same temperature increase, 
F~n for 800 decreases from 5568 to 1550 fm: (a factor of 
3.6). 

The smallest values for E are observed at 15 K and are 
in the range 0.20 to 0.25 for all three extinction models. 
It can be seen from Fig. 5 that, for those reflections with 
E < 0.5, the values of F 2 are overcorrected, i.e. after 
correction, those reflections most severely affected by 
extinction have F 2 systematically greater than EF2n . A 
very similar effect was observed for each of the 
extinction models that we tested. As a consequence, all 
reflections having E < 0.5 were given zero weight in the 
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Fig. 2. The mosaic-block size in the HMT crystal assuming this to be a 
cube with edge I. The vertical bars indicate 4-tr. (a) Model assuming 
a spatial correlation in the scattering from different blocks (Sabine, 
1992). (b) Model assuming no such spatial correlation (Sabine, 
1994). 
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Fig. 3. Isotropic mosaic spread (g) for the HMT crystal. (a) Model 
assuming a spatial correlation in the scattering from different blocks 
(Sabine, 1992). (b) Model assuming no such spatial correlations 
(Sabine, 1994). 
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least-squares structure refinements. It was found that, 
unless this was done, physically unrealistic probability 
density functions (p.d.f.'s) were obtained for the 
anharmonic component of the H nuclear m.s. displace- 
ments. In particular, an unrealistically large value was 
obtained for C 123 for the H atom at 15 K. This conferred 
an asymmetry on  the total p.d.f, for H which was 
opposite in sense from the asymmetry to be expected for 
a Morse potential for C m H  stretching vibrations. 

It is concluded that, although all three models for 
extinction gave very good overall agreement between 
observed and calculated Bragg intensities (Table 3), there 
are deficiencies in the theory, which are revealed in 
considering those reflections very severely affected by 
extinction. The extinction theories used in this work are 
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Fig. 4. Extinction factor E = lobs/l ~ as a function of temperature 
for the strong reflections 110, 440 and 800, which occur at 
sin0/2 = 0.10, 0.41 and 0.57,~, -1, respectively, and for the weaker 
reflections 400 and 754, which occur at 0.29 and 0.68,~ -1, 
respectively. 
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Fig. 5. The ratio F2/F 2 as a function of the extinction factor E is shown 
for the set of independent reflections measured at 15 K. The ratio is 
shown before and after the extinction factor correction is applied. 
Above (corrected) F~ = eFt ;  below (uncorrected) F~ = F~n. 
Ideally, uncorrected values should lie on the line of unit slope, 
which is shown. 

based on the assumption that there is negligible 
difference between the wave vectors of the incident 
and diffracted beams within the crystal and the same 
wave vectors in vacuum. Sabine & Blair (1992) have 
shown that when this simplification is removed by taking 
into account the dynamic refractive index of the crystal, 
the Hamilton-Darwin energy transfer equations lead to 
the exact results of the dynamical theory for the infinite 
plate of finite thickness. This is the only crystal shape for 
which exact dynamical solutions are available. 

In Fig. 5, it can be seen that the overcorrection 
approaches 1.6 for the HMT reflections most affected by 
extinction. This indicates that reflections with E < 0.5 
require treatment by the full dynamical theory. In 
practice, it would also be necessary to grow crystals in 
the form of large plates. 

In crystals that are almost perfect, such as the present 
specimen, both the mosaic block size l and the mosaic 
block orientation parameter g are needed for the 
description of the dislocation density, p. If dislocations 
are concentrated at the small-angle boundaries between 
the blocks (as is likely), then, qualitatively, the higher the 
dislocation density the larger the average mosaic spread 
and the smaller the block size. According to Cottrell 
(1953), the dislocation density is given by 

p = (9/[b(Dl)a/2], 

where (9 is the total mosaic spread (in rad), b is the 
Burgers vector for the dislocations and D is the size of 
the irradiated region. From their X-ray topographic study 
of HMT, DiPersio & Escaig (1972) have observed both 
(1/2)[111] and [100] Burgers vectors. If we assume that 
such dislocations are present in equal numbers, then 
b = 6 , ~ .  The whole crystal is irradiated, hence 
D = 2mm. From our extinction analysis, l = 1001xm 
and if (9, taken as twice the full width at half-maximum 
of the assumed Gaussian mosaic-block distribution, is 
given by 1.33/g, where g = 3  x 104rad -1, then 
p -  2 x 103 mm -2. In their study, DiPersio & Escaig 
(1972) used a large HMT crystal with faces measuring 
12 x 8mm. They estimated a very low dislocation 
density of < 1 mm -2 assuming that the mosaic domain 
boundary appears as dislocatiori contrast in their 
topographs. The basis for the large difference in the 
two estimates is unclear. The crystals used for both 
studies were grown from aqueous ethanol solution 
although otherwise the crystal growth conditions could 
have been quite different. Our crystal was much smaller 
and was grown under ambient conditions (no constant 
temperature bath). It was not subjected to thermal shock 
other than the slow cooling and warming associated with 
the neutron data collection. 

(ii) The nuclear thermal vibrations 

When the observed diffracted intensities are strongly 
affected by extinction, as in HMT, there must be concern 
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whether the structure refinement can provide physically 
realistic atomic m.s. displacements. As noted above, only 
when the reflections most affected by extinction were 
omitted was it possible to obtain acceptable values for 
the anharmonic vibration parameter C 123 for the H 
nuclei. With regard to the harmonic vibrations, the plot 
of the equivalent isotropic m.s. displacement Ueq = 
(U 11 + U 22 + U33)/3 as a function of temperature for C 
and N shows reasonable agreement with previously 
reported X-ray and neutron values (Fig. 6). This includes 
the result of a recent X-ray study by Kampermann et al. 
(1994) at high resolution ( s i n 0 / 2 <  1.47,~-1). The 
X-ray data appear to be insignificantly affected by 
extinction because of the use of a short wavelength 
(Ag K a ,  2 = 0.5608 tk) and a small crystal (0.4 mm). The 
refinement gave Rw(F 2) = 0.038 for 333 independent 
reflections without involving a model for extinction. It 
was intended to obtain the X-ray data at 120 K for direct 
comparison of U ij values with those of the present 
neutron study. For this reason, the X-ray data were 
collected at the temperature where the unit-cell dimen- 
sion agreed with the value from neutron diffraction at 
120K. However, if the crystal was actually at 130K, 
only a small increase in the cell dimension (1.3o') would 
be required. The U ij values reported by Kampermann et 
al. (1994) would then be in excellent agreement with the 
Ueq values shown in Fig. 6. We conclude that the U ij 
values presently obtained for C and N are physically 
meaningful provided that neutron reflections having 
extinction factors E < 0.5 are excluded from the 
refinement. 

In a molecular crystal such as HMT, the intramole- 
cular forces are stronger than the intermolecular forces. 
Thus, the internal vibrations, which are essentially those 
of the isolated molecule in the gas phase, will occur with 
higher frequencies than the external vibrations. The low- 
frequency external vibrations are the lattice modes of the 
crystal structure. For these modes, the molecules can be 
considered to vibrate as rigid bodies (see Fig. 3.13 in 
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Fig. 6. Equivalent isotropic thermal m.s. displacements for carbon in 
HMT as determined by X-ray and neutron diffraction. (The plot for 
nitrogen is very similar). * Becka & Cruickshank (1963a), MoKa 
results. ** Duckworth et al. (1970) for neutron data and Stevens & 
Hope (1975) for X-ray (MoKa). + Kampermann et al. (1994) for 
X-ray (Ag Kot), negligible extinction. 

Willis & Pryor, 1975). Dolling, Pawley & Powell (1973) 
point out that, for HMT, the lowest frequency internal 
mode reported by Elvebredd & Cyvin (1972) in their 
normal-mode analysis of the isolated HMT molecule is 
about 3.5 times higher than the highest frequency 
external mode as determined from coherent inelastic 
neutron scattering (Dolling & Powell, 1970). This 
indicates that in HMT there is very little coupling 
between the internal and external vibrations. Further, the 
normal-mode analysis shows that the internal m.s. 
displacements, especially those of C and N, are almost 
independent of temperature in the range 0 to 298 K. In 
our analysis of the m.s. displacements determined by 
neutron diffraction, we follow Becka & Cruickshank 
(1963b), who assumed that the internal and extemal 
vibrations of HMT are uncoupled and that the observed 
total nuclear m.s. displacement for each nucleus is the 
sum of m.s. displacements from the internal and extemal 
modes. 

For each temperature, the nuclear anisotropic m.s. 
displacements were used in a rigid-body analysis (Scho- 
maker & Trueblood, 1968) to determine the isotropic 
rigid-body m.s. translational (t) and librational (co) 
displacements. Because of the molecular and crystal 
symmetry in HMT, the components of the cross tensor 
(S) are all zero and the rigid-body motion is described 
completely by the two parameters t and o9. The 
rigid-body calculations, using computer programs by 
Craven & He (1987), were made for the molecular frame 
with H nuclei omitted. The least-squares fitting was 
carded out based on values of U e'~xt for C and N, where 
U~Jxt = U~b s - -U~ t. Here, U~ t was assigned the values 
obtained by Elvebredd & Cyvin (1972) in their normal- 
mode calculations for HMT (Uiln~ = 0.0015, 

22 23 ._. Ui,, = 0.0014, Ui, t -0.0002 A 2 for C; U~lt = 
"-- 23 0.0011, Uin t = 0.0001 ,~2 for N). The same values were 

assumed for all six temperatures. The resulting rigid- 
body parameters are shown in Table 4. Also from Table 
4, it can be seen that the C - - N  bond length after 
correction for rigid.-body libration is the same (1.475 A) 
within o . - -0 .002A over the temperature range 15 to 
200 K. The plot of rigid-body parameters vs tempera- 
ture (Fig. 7) shows asymptotic behaviour consistent 
with the increasing importance of zero-point motion 
(t _~ 0.0021~2; o9 ~ 3 02) at the lowest temperatures. 
The asymptotic effect is more pronounced for the rigid- 
body translation, t. There is an almost linear dependence 
about 30 K, indicating essentially classical behaviour for 
the lattice modes above this temperature. 

The internal m.s. displacements for the H nuclei are 
considerably ~eater than those for C and N. The 
estimates of U;Jnt..for H in Table 5 were obtained from 
U[Jnt = U~b s - -  f;Jxt, where U~Jxt w a s  obtained from t a n d  
09, by including the H nuclei with the rigid motion of the 
C - - N  framework. The harmonic internal m.s. displace- 
ment for H is approximately independent of temperature. 
Weighted mean values obtained from Table 5 are 
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0.0074~, 2 along the C - - H  bond, 0.0142A 2 for CH 2 
out-of-plane motion and 0.0171 a~ 2 for in-plane motion. 
The largest deviation from the weighted mean values is 
3.1o" for the out-of-plane motion at 200K. Also in Table 
5 are listed the estimates of m.s. amplitudes for harmonic 
C - - H  bond stretching (A) obtained directly from the 
observed U iJ values as proposed by Hirshfeld (1975). As 
expected, the A values in Table 5 agree well with those 
obtained by subtracting the m.s. internal motion for C 
(0.0015 .~2; Elvebredd & Cyvin, 1972) f r o m  U./mJt for H in 
Table 5, column (a). The weighted mean value for ,6 is 
0.0060 ~2. 

It is of interest to compare the internal m.s. displace- 
ments for H (Table 5) with those reported by Thomas & 
Ghosh (1975). In their Table 3, results from a normal- 
mode analysis for HMT are presented based on a force 
field that gave good agreement with frequencies 
observed in their inelastic neutron scattering spectrum 
and in the IR spectrum of Mecke & Spiesecke (1955). 
The m.s. displacements from this normal-mode calcula- 
tion are given in detail for H but, unfortunately, not those 
for C and N. Thomas & Ghosh (1975) point out that in 
HMT the internal displacements for H can be attributed 
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Fig. 7. M.s. displacement for the isotropic rigid-body vibration of 
the C - - N  framework of HMT as a function of temperature. 
(a) Translation. (b) Libration. 

Table 5. H-nuclei vibrations 

The internal vibrations for the H nuclei (units A2X 10 4) and their 
e.s.d.'s are obtained from the difference tensor U{~ t = U~b s - -U~t ,  
where U~ixt is the contribution from HMT rigid-body vibration. Principal 
values for U./mJt occur with 8 ° of the directions specified here. The 
differences in m.s. displacement A =..(u2)H -- (U2)c are evaluated along 
the C - - H  bond direction using Ugh ~ for H and C. Thus, A (units 
.~z x 104) is an estimate of harmonic C - - H  bond stretching (Hirshfeld, 
1975). The value of U.~t for C along the C - - H  bond (0.015~,2; 
Elvebredd & Cyvin, 1975) must be added to `4 in order to compare with 
the values in column (a). 

uiiJ t for H 

(a) (b) (c) 
Temperature Along C - - H  Normal to In the CH 2 

(K) ,4 bond CH 2 plane plane 

15 57 (6) 68 (5) 151 (5) 182 (5) 
50 57 (6) 78 (5) 132 (5) 168 (5) 
80 55 (6) 67 (5) 150 (5) 170 (5) 

120 61 (7) 74 (6) 141 (6) 162 (6) 
160 68 (8) 79 (8) 145 (8) 178 (8) 
200 82 (10) 94 (9) 114 (9) 160 (9) 

C 

(a) 

C 

(b) 

Fig. 8. Total p.d.f.'s for the H nuclei of the methylene group, including 
the anharmonie component. (a) 200K. (b) 15 K. 
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largely to the H nuclei riding rigidly with the internal 
vibrations of  the C - - N  framework. However,  they list 
five normal modes (2890 to 2967cm -1) as being 
essentially C - - H  stretching vibrations. The sum of  their 
m.s. displacements for H along the C - - H  bond direction 
is uiiJnt = 0.0053 ,~2. The corresponding sum for all the 
internal modes is 0.0068 ,~2. Principal values for the total 
m.s. internal displacement for H, as derived from Table 3 
of  Thomas & Ghosh (1975), are 0.0128 ,~2 for the out-of- 
plane CH 2 motion and 0.0204,~2 for the in-plane motion. 
These are similar to the weighted mean values from 
Table 5, al though the estimate of  in-plane mot ion from 
neutron diffraction is somewhat  smaller. 

The probabili ty density function or p.d.f. (the prob- 
ability of  finding the nucleus displaced from its mean 
position) is shown in Fig. 8 in the plane through the 
nuclei  of  the CH 2 group. The 50% probability level 
occurs at the third contour for each nucleus. The 
vibrations of  C are harmonic and therefore its p.d.f, is 
ellipsoidal at all temperatures. There is a small 
anharmonic component  in the vibrations of  H at 200 K 
and 160K which gives rise to a slightly skewed p.d.f. 
At lower temperatures this effect becomes insignificant 
(see the C/kl values for H in Table 2). I f  the unit-cell 
dimension a 0 (Table 1) is plotted vs temperature, there is 
a decrease in a 0 with cooling that persists at least until 
about 30K.  This indicates that the thermal vibrations 
have an anharmonic component  in the temperature range 
120 to 50 K but the effects on the Bragg intensity data are 
too small to be detected with our structure model. 

We are grateful to Dr J. R. Ruble who grew the HMT 
crystal used for neutron data collection. This work was 
supported by grants HL-20350 and GM-22548 from the 
National Institutes of  Health. The neutron diffraction data 
were collected and some of  the computations were 
carded out at the Brookhaven National Laboratory under 
contract DE-AC02-76CH00016 from the US Department  
of  Energy. 
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